Приборы для измерения интенсивности теплового излучения. Расчет интенсивности теплового излучения Контроль интенсивности теплового излучения осуществляется с помощью

Что такое тепловое излучение? Приборы для измерения теплового излучения. Какой прибор лучше будет купить?

Измеритель теплового излучения с поверкой какой лучше купить?

Тепловое излучение - это электромагнитное излучение, которое возникает благодаря внутренней энергии тела. Обладает сплошным спектром, основной показатель которого зависит от температуры тела. Тепловое излучение излучает: лампы накаливания (спираль), электроплиты, атмосфера, нагретые металлы...

Причиной того, что вещество излучает электромагнитные волны, является устройство атомов и молекул из заряженных частиц, из-за чего вещество пронизано электромагнитными полями. В частности, при столкновениях атомов и молекул происходит их ударное возбуждение с последующим высвечиванием.

Если перед Вами встал вопрос приобретения измерителя теплового излучения, то данная статья Вам поможет сделать правильный выбор.

Для того, что бы Ваши замеры были легитимными, Вам необходимо средство измерение. Т.е. прибор, который внесен в Государственный реестр средств измерений РФ.

К Вашему "счастью" ☺ , область теплового излучения не может похвастаться большим числом приборов и средств измерений. Более того, в Реестре РФ всего 3 прибора, которые прошли испытания и позволяют измерять тепловое излучение (не путать с приборами, которые измеряют тепловое обучение!). И в данном разделе сайта, Вы сможете найти всю информацию по ним. Стоимость на измерители теплового излучения, их технические характеристики, а так же срок поставки. Основную сравнительную информацию можно получить - ознакомившись со следующей таблицей:

Средства измерения для определения параметров теплового излучения:

Наименование прибора:

Диапазон измерения: Основные особенности, комментарии: Стоимость: Страна производства:
Радиометр теплового излучения "ИК-метр" от 10 до 2500 Вт/м 2 Новый прибор для измерения энергетической яркости и интенсивности теплового потока, который успел зарекомендовать себя с хорошей стороны. На сегодняшний день является наиболее востребованным в данной области, опираясь на технические характеристики, срок поставки и цену. Так же плюсом является то, что в отличие от аналогов имеет межповерочный интервал 2 года. самая низкая РФ
Радиометр "Аргус-03" от 1 до 2 000Вт/м 2 Популярный прибор теплового излучения, давно зарекомендовавший и долгое время не имеющий аналогов на территории РФ. Основной недостаток данного средства измерения - срок поставки. Который может составлять 90 дней! За долгое время эксплуатирования зарекомендовал себя как очень надежный измеритель энергетической яркости. средняя РФ
Радиометр энергетической освещенности РАТ-2П от 10 до 2000 Вт/м 2 Зарубежный прибор для определения энергетической освещенности и ультрафиолетового обучения. самая высокая Украина

20.03.2014

Измерение плотности тепловых потоков, проходящих через ограждающие конструкции. ГОСТ 25380-82

Тепловой поток - количество теплоты, переданное через изотермическую поверхность в единицу времени. Тепловой поток измеряется в ваттах или ккал/ч (1 вт = 0,86 ккал/ч). Тепловой поток, отнесённый к единице изотермической поверхности, называется плотностью теплового потока или тепловой нагрузкой; обозначается обычно q, измеряется в Вт/м 2 или ккал/(м 2 ×ч). Плотность теплового потока - вектор, любая компонента которого численно равна количеству теплоты, передаваемой в единицу времени через единицу площади, перпендикулярной к направлению взятой компоненты.

Измерения плотности тепловых потоков, проходящих через ограждающие конструкции, производятся в соответствии с ГОСТ 25380-82 “Здания и сооружения. Метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции”.

Данным ГОСТ устанавливается метод измерения плотности теплового потока , проходящего через однослойные и многослойные ограждающие конструкции зданий и сооружений – общественных, жилых, сельскохозяйственных и производственных.

В настоящее время при строительстве, приемке и эксплуатации зданий, а также в жилищно-коммунальной отрасли большое внимание уделяют качеству выполненной постройки и отделки помещений, теплоизоляции жилых зданий, а также экономии энергоресурсов.

Важным оценочным параметром при этом служит расход тепла от изолирующих конструкций. Испытания качества тепловой защиты ограждающих конструкций зданий могут выполняться на разных этапах: в период введения зданий в эксплуатацию, на законченных объектах строительства, во время строительства, в период капитального ремонта сооружений, и в период эксплуатации зданий для составления энергетических паспортов зданий, и по жалобам.

Измерения плотности теплового потока должны проводиться при температуре окружающего воздуха от -30 до +50°С и относительной влажности не более 85%.

Измерения плотности теплового потока позволяет оценить расход тепла через ограждающие конструкции и, тем самым, определить теплотехнические качества ограждающих конструкций зданий и сооружений.

Данный стандарт не применим для оценки теплотехнических качеств ограждающих конструкций, пропускающих свет (стекло, пластик и т.д.).

Рассмотрим, на чем основан метод измерения плотности теплового потока. На ограждающей конструкции здания (сооружения) устанавливается пластинка (так называемая «вспомогательная стенка»). Образующейся на этой «вспомогательной стенке» температурный перепад пропорционален в направлении теплового потока его плотности. Перепад температуры преобразуется в электродвижущую силу батарей термопар, которые располагаются на «вспомогательной стенке» и ориентированы параллельно по тепловому потоку, а соединены последовательно по генерируемому сигналу. В совокупности «вспомогательная стенка» и батарея термопар составляют измерительный преобразователь для измерения плотности теплового потока.

По результатам измерения электродвижущей силы батарей термопар рассчитывается плотность теплового потока на предварительно откалиброванных преобразователях.

Схема измерения плотности теплового потока приведена на чертеже.

1 - ограждающая конструкция; 2 -преобразователь теплового потока; 3 - измеритель э.д.с.;

t в, t н - температура внутреннего и наружного воздуха;

τ н, τ в, τ’ в - температура наружной, внутренней поверхностей ограждающей конструкции вблизи и под преобразователем соответственно;

R 1 , R 2 - термическое сопротивление ограждающей конструкции и преобразователя теплового потока;

q 1 , q 2 - плотность теплового потока до и после закрепления преобразователя

Источники инфракрасного излучения. Защита от инфракрасного излучения на рабочих местах

Источником инфракрасного излучения (ИК) является любое нагретое тело, температура которого определяет интенсивность и спектр излучаемой электромагнитной энергии. Длина волны с максимальной энергией теплового излучения определяется по формуле:

λ mах = 2,9-103 / T [мкм] (1)

где Т - абсолютная температура излучающего тела, К.

Инфракрасное излучение подразделяется на три области:

  • коротковолновая (X = 0,7 - 1,4 мкм);
  • средневолновая (к = 1,4 - 3,0 мкм):
  • длинноволновая (к = 3,0 мкм - 1,0 мм).

На организм человека электрические волны ИК диапазона оказывают, в основном, тепловое воздействие. При оценки этого воздействия учитывается:

· длина и интенсивность волны с максимальной энергией;

· площадь излучаемой поверхности;

· длительность облучения в течение рабочего дня;

· продолжительность непрерывного воздействия;

· интенсивность физического труда;

· интенсивность движения воздуха на рабочем месте;

· тип ткани, из которой изготовлена спецодежда;

· индивидуальные особенности организма.

К коротковолновому диапазону относятся лучи с длиной волны λ ≤ 1,4 мкм. Их характеризует способность проникать в ткани организма человека на глубину до нескольких сантиметров. Это воздействие вызывает тяжелые поражения различных органов и тканей человека с отягчающими последствиями. Наблюдается повышение температуры мышечных, легочных и других тканей. В кровеносной и лимфатической системах образуются специфические биологически-активные вещества. Нарушается работа центральной нервной системы.

К средневолновому диапазону относятся лучи с длиной волны λ = 1,4 - 3,0 мкм. Они проникают только в поверхностные слои кожи, а потому их воздействие на организм человека ограничивается повышением температуры подверженных воздействию участков кожи и повышением температуры тела.

Длинноволновой диапазон – лучи с длиной волны λ > 3 мкм. Воздействуя на организм человека, они вызывают наиболее сильное повышение температуры подверженных воздействию участков кожи, что нарушает деятельность дыхательной и сердечнососудистой систем и нарушает тепловой баланс оргазма, приводящий к тепловому удару.

Согласно ГОСТ 12.1.005-88 интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования и осветительных приборов не должна превышать: 35 Вт/м 2 при облучении более 50% поверхности тела; 70 Вт/м 2 при облучении от 25 до 50% поверхности тела; 100 Вт/м 2 при облучении не более 25%> поверхности тела. От открытых источников (нагретые металл и стекло, открытое пламя) интенсивность теплового облучения не должна превышать 140 Вт/м 2 при облучении не более 25% поверхности тела и обязательном использовании средств индивидуальной защиты, в том числе средств защиты лица и глаз.

Нормы ограничивают также температуру нагретых поверхностей оборудования в рабочей зоне, которая не должна превышать 45 °С.

Температура поверхности оборудования, внутри которого температура близка к 100 °С, должна быть не выше 35 °С.

К основным видам защиты от инфракрасного излучения относятся:

1. защита временем;

2. защита расстоянием;

3. экранирование, теплоизоляция или охлаждение горячих поверхностей;

4. увеличение теплоотдачи тела человека;

5. индивидуальные средства защиты;

6. устранение источника тепловыделения.

Различают экраны трех типов:

· непрозрачные;

· прозрачные;

· полупрозрачные.

В непрозрачных экранах при взаимодействии энергии электромагнитных колебаний с веществом экрана происходит ее преобразование в тепловую энергию. Вследствие этого преобразования происходит нагрев экрана и он сам становится источником теплового излучения. Излучение противолежащей источнику поверхностью экрана условно рассматривается как пропущенное излучение источника. Становится возможным рассчитать плотность теплового потока, проходящего через единицу площади экрана.

С прозрачными экранами все обстоит иначе. Излучение, попадающее на поверхность экрана, распределяется внутри него согласно законам геометрической оптики. Этим и объясняется его оптическая прозрачность.

Полупрозрачным экранам присущи свойства как прозрачных, так и непрозрачных.

· теплоотражающие;

· теплопоглощающие;

· теплоотводящие.

На самом деле все экраны в той или иной степени обладают свойством поглощения, отражения или отведения тепла. Поэтому определение экрана к той или иной группе зависит от того, какое свойство наиболее сильно выражено.

Теплоотражающие экраны отличает низкая степень черноты поверхности. Поэтому они отражают большую часть падающих на них лучей.

К теплопоглощающим относятся экраны, у которых материал, из которого они выполнены, имеет малый коэффициент теплопроводности (высокое термическое сопротивление).

В качестве теплоотводящих экранов выступают прозрачные пленки, либо водяные завесы. Также могут быть использованы экраны, находящиеся внутри стеклянных или металлических защитных контуров.

Э = (q – q 3) / q (3)

Э = (t – t 3) / t (4)

q 3 - плотность потока ИК излучения с применением защиты, Вт/м 2 ;

t - температура ИК излучения без применения защиты, °С;

t 3 - темпера­тура ИК излучения с применением защиты, °С.

Используемые контрольно-измерительные приборы

Для измерения плотности тепловых потоков, проходящих через ограждающие конструкции, и проверки свойств теплозащитных экранов нашими специалистами были разработаны приборы серии .

Диапазон измерения плотности теплового потока: от 10 до 250, 500, 2000, 9999 Вт/м 2

Область применения:

· строительство;

· объекты энергетики;

· научные исследования и др.

Измерение плотности теплового потока, как показателя теплоизоляционных свойств различных материалов, приборами серии производят при:

· теплотехнических испытаниях ограждающих конструкций;

· определении тепловых потерь в водяных тепловых сетях;

проведении лабораторных работ в ВУЗах (кафедры «Безопасность жизнедеятельности», «Промышленная экология» и др.).

На рисунке приведен опытный образец стенда "Определение параметров воздуха рабочей зоны и защита от тепловых воздействий" БЖЗ 3 (призводство ООО «Интос+»).

На стенде располагается источник теплового излучения (рефлектор бытовой). Перед источником размещают экраны из разных материалов (металл, ткань и др.). За экраном внутри модели помещения размещается прибор на различных расстояниях от экрана. Над моделью помещения закрепляется вытяжной зонт с вентилятором. Прибор , помимо зонда для измерения плотности теплового потока, оснащен зондом для измерения температуры воздуха внутри модели. В целом стенд представляет собой наглядную модель для оценки эффективности различных видов тепловой защиты и локальной системы вентиляции.

С помощью стенда определяется эффективность защитных свойств экранов в зависимости от материалов, из которых они изготовлены и от расстояния от экрана до источника теплового излучения.

Принцип действия и конструктивное исполнение прибора ИПП-2

Конструктивно прибор выполняется в пластмассовом корпусе. На передней панели прибора располагаются четырех разрядный светодиодный индикатор, кнопки управления; на боковой поверхности располагаются разъёмы для подключения прибора к компьютеру и сетевого адаптера. На верхней панели расположен разъем для подключения первичного преобразователя.

Внешний вид прибора

1 - Светодиодная индикация состояния аккумулятора

2 - Светодиодная индикация нарушения порогов

3 - Индикатор значений измерения

4 - Разъем для подключения зонда измерения

5 , 6 - Кнопки управления

7 - Разъем для подключения к компьютеру

8 - Разъем для подключения сетевого адаптера

Принцип работы

Принцип действия прибора основан на измерении перепада температур на “вспомогательной стенке”. Величина температурного перепада пропорциональна плотности теплового потока. Измерение температурного перепада осуществляется с помощью ленточной термопары, расположенной внутри пластинки зонда, выступающей в роли “вспомогательной стенки”.

Индикация измерений и режимов работы прибора

Прибор осуществляет опрос измерительного зонда, выполняет расчет плотности теплового потока и отображает её значение на светодиодном индикаторе. Интервал опроса зонда составляет около одной секунды.

Регистрация измерений

Данные, полученные от измерительного зонда, записываются в энергонезависимую память блока с определенным периодом. Настройка периода, считывание и просмотр данных осуществляется с помощью программного обеспечения.

Интерфейс связи

С помощью цифрового интерфейса из прибора могут быть считаны текущие значения измерения температуры, накопленные данные измерений, изменены настройки прибора. Измерительный блок может работать с компьютером или иными контроллерами по цифровому интерфейсу RS-232. Скорость обмена по интерфейсу RS-232 настраивается пользователем в пределах от 1200 до 9600 бит/с.

Особенности прибора:

  • возможность установки порогов звуковой и световой сигнализации;
  • передача измеренных значений на компьютер по интерфейсу RS-232.

Достоинством прибора является возможность попеременного подключения к прибору до 8-ми различных зондов теплового потока. Каждый зонд (датчик) имеет свой индивидуальный калибровочный коэффициент (коэффициент преобразования Kq), показывающий, насколько напряжение с датчика изменяется относительно теплового потока. Данный коэффициент используется прибором для построения калибровочной характеристики зонда, по которой определяется текущее измеренное значение теплового потока.

Модификации зондов для измерения плотности теплового потока:

Зонды теплового потока предназначены для проведения измерений поверхностной плотности теплового потока по ГОСТ 25380-92.

Внешний вид зондов теплового потока

1. Зонд теплового потока прижимного типа с пружиной ПТП-ХХХП выпускается в следующих модификациях (в зависимости от диапазона измерения плотности теплового потока):

ПТП-2.0П: от 10 до 2000 Вт/м 2 ;

ПТП-9,9П: от 10 до 9999 Вт/м 2 .

2. Зонд теплового потока в виде «монеты» на гибком кабеле ПТП-2.0.

Диапазон измерения плотности теплового потока: от 10 до 2000 Вт/м 2 .

Модификации зондов для измерения температуры:

Внешний вид зондов для измерения температуры

1. Погружные термопреобразователи ТПП-А-D-L на основе терморезистора Pt1000 (термопреобразователи сопротивления) и термопреобразователи ТХА-А-D-L на основе термопары ХА (термопреобразователи электрические) предназначены для измерения температуры различных жидких и газообразных сред, а также сыпучих материалов.

Диапазон измерения температуры:

Для ТПП-А-D-L: от -50 до +150 °С;

Для ТХА-А-D-L: от -40 до +450 °С.

Габаритные размеры:

D (диаметр): 4, 6 или 8 мм;

L (длина): от 200 до 1000 мм.

2. Термопреобразователь ТХА-А-D1/D2-LП на основе термопары ХА (термопреобразователь электрический) предназначен для измерения температуры плоской поверхности.

Габаритные размеры:

D1 (диаметр «металлического штыря»): 3 мм;

D2 (диаметр основания – «пятачка»): 8 мм;

L (длина «металлического штыря»): 150 мм.

3. Термопреобразователь ТХА-А-D-LЦ на основе термопары ХА (термопреобразователь электрический) предназначен для измерения температуры цилиндрических поверхностей.

Диапазон измерения температуры: от -40 до +450 °С.

Габаритные размеры:

D (диаметр) – 4 мм;

L (длина «металлического штыря»): 180 мм;

Ширина ленты – 6 мм.

В комплект поставки прибора для измерения плотности тепловой нагрузки среды входят:

1. Измеритель плотности теплового потока (измерительный блок).

2. Зонд для измерения плотности теплового потока.*

3. Зонд для измерения температуры.*

4. Программное обеспечение.**

5. Кабель для подключения к персональному компьютеру. **

6. Свидетельство о калибровке.

7. Руководство по эксплуатации и паспорт на прибор .

8. Паспорт на преобразователи термоэлектрические (температурные зонды).

9. Паспорт на зонд плотности теплового потока.

10. Сетевой адаптер.

* – Диапазоны измерения и конструкция зондов определяются на этапе заказа

** – Позиции поставляются по специальному заказу.

Подготовка прибора к работе и проведение измерений

1. Извлечь прибор из упаковочной тары. Если прибор внесен в теплое помещение из холодного, необходимо дать прибору прогреться до комнатной температуры в течение не менее 2-х часов.

2. Зарядить аккумуляторы, подключив к прибору сетевой адаптер. Время зарядки полностью разряженного аккумулятора не менее 4 часов. В целях увеличения срока службы аккумуляторной батареи рекомендуется раз в месяц проводить полную разрядку до автоматического выключения прибора с последующим полным зарядом.

3. Соединить измерительный блок и измерительный зонд соединительным кабелем.

4. При комплектации прибора диском с программным обеспечением, установить его на компьютер. Подключить прибор к свободному СОМ-порту компьютера соответствующими соединительными кабелями.

5. Включить прибор коротким нажатием кнопки "Выбор".

6. При включении прибора осуществляется самотестирование прибора в течение 5 секунд. При наличии внутренних неисправностей прибор на индикаторе сигнализирует номер неисправности, сопровождаемые звуковым сигналом. После успешного тестирования и завершения загрузки на индикаторе отображаются текущее значение плотности теплового потока. Расшифровка неисправностей тестирования и других ошибок в работе прибора приведена в разделе 6 настоящего руководства по эксплуатации.

7. После использования выключить прибор коротким нажатием кнопки "Выбор".

8. Если предполагается длительное хранение прибора (более 3 месяцев) следует извлечь элементы питания из батарейного отсека.

Ниже приведена схема переключений в режиме “Работа”.

Подготовка и проведение измерений при теплотехнических испытаниях ограждающих конструкций.

1. Измерение плотности тепловых потоков проводят, как правило, с внутренней стороны ограждающих конструкций зданий и сооружений.

Допускается проведение измерений плотности тепловых потоков с наружной стороны ограждающих конструкций в случае невозможности проведения их с внутренней стороны (агрессивная среда, флуктуации параметров воздуха) при условии сохранения устойчивой температуры на поверхности. Контроль условий теплообмена проводят с помощью термощупа и средств для измерения плотности теплового потока: при измерении в течение 10 мин. их показания должны быть в пределах погрешности измерений приборов.

2. Участки поверхности выбирают специфические или характерные для всей испытываемой ограждающей конструкции в зависимости от необходимости измерения локальной или усредненной плотности теплового потока.

Выбранные на ограждающей конструкции участки для измерений должны иметь поверхностный слой из одного материала, одинаковой обработки и состояния поверхности, иметь одинаковые условия по лучистому теплообмену и не должны находиться в непосредственной близости от элементов, которые могут изменить направление и значение тепловых потоков.

3. Участки поверхности ограждающих конструкций, на которые устанавливают преобразователь теплового потока, зачищают до устранения видимых и осязаемых на ощупь шероховатостей.

4. Преобразователь плотно прижимают по всей его поверхности к ограждающей конструкции и закрепляют в этом положении, обеспечивая постоянный контакт преобразователя теплового потока с поверхностью исследуемых участков в течение всех последующих измерений.

При креплении преобразователя между ним и ограждающей конструкцией не допускается образование воздушных зазоров. Для исключения их на участке поверхности в местах измерений наносят тонкий слой технического вазелина, перекрывающий неровности поверхности.

Преобразователь может быть закреплен по его боковой поверхности при помощи раствора строительного гипса, технического вазелина, пластилина, штанги с пружиной и других средств, исключающих искажение теплового потока в зоне измерения.

5. При оперативных измерениях плотности теплового потока незакрепленную поверхность преобразователя склеивают слоем материала или закрашивают краской с той же или близкой степенью черноты с различием Δε ≤ 0,1, что и у материала поверхностного слоя ограждающей конструкции.

6. Отсчетное устройство располагают на расстоянии 5-8 м от места измерения или в соседнем помещении для исключения влияния наблюдателя на значение теплового потока.

7. При использовании приборов для измерения э.д.с., имеющих ограничения по температуре окружающего воздуха, их располагают в помещении с температурой воздуха, допустимой для эксплуатации этих приборов, и подключение к ним преобразователя теплового потока производят при помощи удлинительных проводов.

8. Аппаратуру по п.7 подготавливают к работе в соответствии с инструкцией по эксплуатации соответствующего прибора, в том числе учитывают необходимое время выдержки прибора для установления в нем нового температурного режима.

Подготовка и проведение измерений

(при проведении лабораторных работ на примере лабораторной работы “Исследование средств защиты от инфракрасного излучения”)

Подключить источник ИК излучения к розетке. Включить источник ИК излучения (верхнюю часть) и измеритель плотности теплового потока ИПП-2.

Установить головку измерителя плотности теплового потока на расстоянии 100 мм от источника ИК излучения и определить плотность теплового потока (среднее значение трех - четырех замеров).

Вручную переместить штатив вдоль линейки, установив головку измерителя на расстояниях от источника излучения, указанных в форме таблицы 1, и повторить измерения. Данные замеров занести в форму таблицу 1.

Построить график зависимости плотности потока ИК излучения от расстояния.

Повторить измерения по пп. 1 - 3 с различными защитными экранами (теплоотражающим алюминиевым, теплопоглощающим тканевым, металлическим с зачерненной поверхностью, смешанным - кольчуга). Данные замеров занести в форму таблицы 1. Построить графики зависимости плотности потока ИК излучения от расстояния для каждого экрана.

Форма таблицы 1

Оценить эффективность защитного действия экранов по формуле (3).

Установить защитный экран (по указанию преподавателя), разместить на нем широкую щетку пылесоса. Включить пылесос в режим отбора воздуха, имитируя устройство вытяжной вентиляции, и спустя 2-3 минуты (после установления теплового режима экрана) определить интенсивность теплового излучения на тех же расстояниях, что и в п. 3. Оценить эффективность комбинированной тепловой защиты по формуле (3).

Зависимость интенсивности теплового излучения от расстояния для заданного экрана в режиме вытяжной вентиляции нанести на общий график (см. п. 5).

Определить эффективность защиты, измеряя температуру для заданного экрана с использованием вытяжной вентиляции и без нее по формуле (4).

Построить графики эффективности защиты вытяжной вентиляции и без нее.

Перевести пылесос в режим "воздуходувки" и включить его. Направляя поток воздуха на поверхность заданного защитного экрана (режим душирования), повторить измерения в соответствии с пп. 7 - 10. Сравнить результаты измерений пп. 7-10.

Закрепить шланг пылесоса на одной из стоек и включить пылесос в режиме "воздуходувки", направив поток воздуха почти перпендикулярно тепловому потоку (немного навстречу) - имитация воздушной завесы. С помощью измерителя измерить температуру ИК излучения без "воздуходувки" и с ней.

Построить графики эффективности защиты "воздуходувки" по формуле (4).

Результаты измерений и их интерпретация

(на примере проведения лабораторной работы на тему «Исследование средств защиты от инфракрасного излучения» в одном из технических ВУЗов г. Москвы).

  1. Стол.
  2. Электрокамин ЭКСП-1,0/220.
  3. Стойка для размещения сменных экранов.
  4. Стойка для установки измерительной головки.
  5. Измеритель плотности теплового потока .
  6. Линейка.
  7. Пылесос Тайфун-1200.

Интенсивность (плотность потока) ИК излучения q определяется по формуле:

q = 0,78 х S х (T 4 х 10 -8 - 110) / r 2 [Вт/м 2 ]

где S - площадь излучающей поверхности, м 2 ;

Т - температура излучающей поверхности, К;

r - расстояние от источника излучения, м.

Одним из наиболее распространенных видов защиты от ИК излучения является экранирование излучающих поверхностей.

Различают экраны трех типов:

·непрозрачные;

·прозрачные;

·полупрозрачные.

По принципу действия экраны подразделяются на:

·теплоотражающие;

·теплопоглощающие;

·теплоотводящие.

Эффективность защиты от теплового излучения с помощью экранов Э определяется по формулам:

Э = (q – q 3) / q

где q - плотность потока ИК излучения без применения защиты, Вт/м 2 ;

q3 - плотность потока ИК излучения с применением защиты, Вт/м 2 .

Типы защитных экранов (непрозрачные):

1. Экран смешанный – кольчуга.

Э кольчуга = (1550 – 560) / 1550 = 0,63

2. Экран металлический с зачерненной поверхностью.

Э al+покр. = (1550 – 210) / 1550 = 0,86

3. Экран теплоотражающий алюминиевый.

Э al = (1550 – 10) / 1550 = 0,99

Построим график зависимости плотности потока ИК излучения от расстояния для каждого экрана.

Как мы видим, эффективность защитного действия экранов различается:

1. Минимальное защитное действие у смешанного экрана – кольчуга – 0,63;

2. Экран алюминиевый с зачерненной поверхностью – 0,86;

3. Наибольшим защитным действием обладает экран теплоотражающий алюминиевый – 0,99.

Нормативные ссылки

При оценке теплотехнических качеств ограждающих конструкций зданий и сооружений и установлении реальных расходов тепла через наружные ограждающие конструкции используются следующие основные нормативные документы:

· ГОСТ 25380-82. Метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции.

· При оценке теплотехнических качеств различных средств защиты от инфракрасного излучения используются следующие основные нормативные документы:

· ГОСТ 12.1.005-88. ССБТ. Воздух рабочей зоны. Общие санитарно-гигиенические требования.

· ГОСТ 12.4.123-83. ССБТ. Средства защиты от инфракрасного излучения. Классификация. Общие технические требования.

· ГОСТ 12.4.123-83 «Система стандартов безопасности труда. Средства коллективной защиты от инфракрасных излучений. Общие технические требования».

Определение интенсивности теплового излучения

Цель работы

Измерение интенсивности теплового излучения, определение эффективности теплозащитных экранов.

Теория метода

К теплоотражающим относят экраны, изготовленные из материалов, хорошо отражающих тепловое излучение. Это листовой алюминий, белая жесть, полированный титан и т.п. Такие экраны отражают до 95 % длинноволнового излучения. Непрерывное смачивание экранов такого типа водой позволяет задерживать излучение почти полностью.

Если же необходимо обеспечить возможность наблюдения за ходом технологического процесса при наличии теплового облучения, то в этом случае широко применяют цепные завесы, представляющие собой наборы металлических цепей, подвешенных перед источником излучения (эффективность до 60-70 %), и прозрачные водяные завесы в виде сплошной тонкой водяной пленки. Эффективность защитного экрана определяется выражением:

где J 1 и J 0 - интенсивность теплового излучения после экрана и перед экраном соответственно.

Обработка опытных данных

Таблица результатов измерений

Расстояние (L ), см

Интенсивность теплового излучения после экрана J 1 , Вт/м 2

Эффективность защитного экрана η Э, %

(при L =40 см)

Воздух (без экрана)

Холщевый экран

Алюминиевый экран

Воздушная завеса

η В-х; η Х.э.

η Ал.э. ; η В.з.

Рисунок 1. Диаграмма интенсивности теплового излучения.

Рисунок 2. Диаграмма интенсивности теплового излучения.

Вывод

В ходе лабораторной работы было установлено, что наиболее эффективно от теплового излучения защищает алюминиевый экран (η Ал.э.=98%), наименее эффективно от теплового излучения защищает воздух (η В-х=47%) и воздушная завеса (η В.з.=55%).

Интенсивность теплового излучения (Вт/м 2) определяется с помощью измерителя плотности теплового потока ИПП–2.

Измеритель ИПП-2 предназначен для измерений по ГОСТ 25380-82 интенсивности теплового потока, проходящего через обмуровку и теплоизоляцию энергообъектов. В комплект с прибором входит преобразователь плотности теплового потока с датчиком на пружине ПТП–Х–П (рис. 3а) и зонд для измерения температуры поверхности (рис. 3б).

Рис. 3.3а. Зонд для измерения плотности теплового потока

с пружиной (ПТП-Х-П)

Рис. 3.3б. Зонд для измерения температуры поверхности

Конструктивно прибор ИПП-2 (рисунок 4) выполнен в пластмассовом корпусе. На передней панели блока располагаются кнопки В и », а на боковой поверхности располагаются разъёмы для подключения прибора к компьютеру и сетевого адаптера. На верхней панели расположен разъем для подключения первичного преобразователя плотности теплового потока или температуры.

Рис. 3.4. Внешний вид прибора ИПП-2:

1 – индикация режимов работы аккумулятора; 2 – индикация нарушения порогов; 3 – кнопка » ; 4 – кнопка В; 5 – разъём подключения первичного преобразователя; 6 – светодиодный четырехразрядный семисегментный индикатор; 7 – разъем для подключения к компьютеру; 8 – разъем для подключения сетевого адаптера

Функционирование прибора осуществляется в одном из режимов: РАБОТА и НАСТРОЙКА.

Режим РАБОТА. Является основным эксплуатационным режимом. В данном режиме производится циклическое измерение выбранного параметра. Кратковременным нажатием кнопки » осуществляется переход между режимами измерения плотности теплового потока и температуры, а также индикации заряда аккумуляторов в процентах 0...100%. Нажатием кнопки » в течение двух секунд осуществляется переход прибора в режим «SLEEP», в этом режиме прибор гасит светодиодную индикацию, но продолжает измерения температуры и запись статистики. Выход из режима «SLEEP» производится нажатием любой кнопки. Нажатием кнопки В в течение двух секунд осуществляется переход прибора в режим НАСТРОЙКА. Кратковременное нажатие кнопки В выключает/включает прибор. В выключенном состоянии прибор прекращает измерения и запись автоматической статистики, при этом все настройки работы прибора и часов реального времени сохраняются. В режиме РАБОТА прибор может производить периодическую автоматическую запись измеренных значений в энергонезависимую память с привязкой ко времени. Схема режима РАБОТА приведена на рисунке 5.

Рис. 3.5. Схема режима РАБОТА

Светодиодная индикация в режиме РАБОТА. Светодиод 1 (рис. 3.4) характеризует состояние аккумуляторной батареи. В режиме заряда при подключенном сетевом адаптере светодиод горит постоянно до состояния 100% зарядки, затем гаснет. В режиме работы с отключенным сетевым адаптером светодиод погашен, и в случае если батарея заряжена менее чем на 10%. Светодиод 2 (рис. 3.4) миганием информирует о нарушении порогов. В режиме «SLEEP» мигает точка в четвертом разряде семисегментного индикатора.

Режим НАСТРОЙКА. Предназначен для задания и записи в энергонезависимую память прибора требуемых при эксплуатации рабочих параметров измерения. Заданные значения параметров сохраняются в памяти прибора при отсутствии питания (исключение составляют дата/время). Общая схема режима НАСТРОЙКА приведена на рис. 3.6.

Рис. 3.6. Общая схема работы режима НАСТРОЙКИ

Данный режим позволяет настроить два порога, имеющиеся в приборе, по одному на каждый параметр. Пороги - это верхняя или нижняя границы допустимого изменения соответствующей величины. При превышении измеряемой температуры верхнего порогового значения или снижении ниже нижнего порогового значения прибор обнаруживает это событие и на индикаторе загорается светодиод 2 (рис. 3.4). Нарушение порогов также сопровождается звуковым сигналом.

Для измерения интегральной интенсивности теплового излучения ис­пользуется приборы чувствительные к инфракрасной и видимой области спек­тра - термоэлектрический актинометр, радиометр, болометр и т.п..

Принцип действия термоэлектрического актинометра (РИС4) основан на различной поглощающей способности зачерненных и блестящих полос сереб­ряной фольги. Вследствие различия температуры зачерненных и незачернен­ных участков серебряной фольги, в расположенных под ними термобатарее возникает электрический ток. Сила тока прямо пропорциональна интенсивно­сти теплового излучения, значения которого считываются со шкалы прибора. Диапазон измерений Е 0-14000Вт/м, погрешность измерения ±175 Вт/м.

Рис.4 Приборы для измерения нагретых поверхностей

Для измерения температуры нагретых поверхностей оборудования при­меняются контактные термометры и термопреобразователи сопротивления (термопары) или дистанционными (пирометры и др.).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Порядок выполнения работы и оформление отчета

1. Подключить стенд к сети переменного тока, а источник теплового излу­чения к розетке пульта управления.

2. Включить источник теплового излучения (верхнюю часть) и измеритель теплового потока ИПП-2м.

3. Установить головку измерителя теплового потока в штативе таким обра­зом, чтобы она была смещена относительно стойки на 100мм. Вручную перемещать штатив вдоль линейки, устанавливая головку измерителя на различном расстоянии от источника теплового излучения, и определять интенсивность теплового излучения в этих точках (определять как сред­нее значение не менее 5 замеров). Данные замеров занести в таблицу. По­строить график зависимости среднего значения интенсивности теплового излучения от расстояния.

4. Устанавливая различные защитные экраны, определить интенсивность теплового излучения на заданных расстояниях. Оценить эффективность защитного действия экранов по формуле (2). Построить график зависи­мости среднего значения интенсивности теплового излучении от расстоя­ния.



5. Установить защитный экран (по указанию преподавателя). Разместить над ним широкую щетку пылесоса. Включить пылесос в режиме отбора воздуха, имитируя устройство вытяжной вентиляции, и спустя 2-3 мину­ты (после установления теплового режима экрана) определить интенсив­ность теплового излучения на тех же расстояниях, что и в пункте 3. Оце­нить эффективность комбинированной тепловой защиты по формуле (2). Построить график зависимости интенсивности теплового излучения от расстояния. По результатам измерений определить эффективность «вы­тяжной вентиляции» (количество уносимого пылесосом тепла). Эту же эффективность определить, измеряя температуру теплозащитного экрана с помощью датчика температуры измерителя ИПП-2м в режиме с исполь­зованием «вытяжной вентиляции» и без нее.

6. Перевести пылесос в режим «воздуходувки» и включить его. Направляя поток воздуха на поверхность защитного экрана (режим «душирования»), повторить измерения в соответствии с пунктом 5. сравнить результаты измерений п.п. 5 и 6.

7. Закрепить шланг пылесоса на одной из стоек и включить пылесос в ре­жиме «воздуходувки», направив поток воздуха почти перпендикулярно тепловому потоку (немного навстречу) - имитация «воздушной завесы». С помощью датчика температуры ИПП-2м измерить температуру воздуха в месте размещения тепловых экранов без воздушной завесы и с завесой.

Отчет о лабораторной работе

А) Таблица

Б) Графики зависимости интенсивности теплового излучения от расстояния


В) Расчет эффективности защитного действия экранов

Г) Расчет эффективности вытяжной вентиляции

Д) Выводы

Контрольные вопросы

1. Что представляет собой лучистый тепловой обмен между телами?

2. Как определяется интенсивность теплового излучения?

3. От чего зависит количество лучистого тепла, поглощаемого телом че­ловека?

4. Что является наиболее эффективным способом теплоотдачи?

5. Перечислите основные мероприятия по защите работающих от воз­можного перегрева.

6. Что такое экранирование излучающих поверхностей? Какие сущест­вуют типы экранов?

7. Как определяется эффективность защиты от теплового излучения с помощью экранов?

8. Что такое вентиляция?

9. Что такое воздухообмен и кратность воздухообмена?

10.Какие приборы используются для измерения интенсивности теплового излучения?

Библиографический список

1.Кукин П.П., Лапин В.Л., Подгорных Е.А. и др. Безопасность технологи -ческих процессов и производств: Учебное пособие для вузов - М.: Выс­шая школа, 2001, 318с.

2. Белов С.В. Безопасность жизнедеятельности. Учебник для вузов - М.: Высшая школа, 2005, 600с.

3. Русак О.Н., Малаян Ц.Р., Занько Н.Г. Безопасность жизнедеятельности. -СПб-М.: Краснодар, 2005, 445с.

4. Русак О.Н. Безопасность охрана труда. Учебное пособие - СПб.: ЛТА, МАНЭБ, 1999, 320с.

5. СанПин 2.2.4.548-96. «Общие санитарно-гигиенические требования к тепловому облучению от нагретых поверхностей технологического обо­рудования».

Лабораторная работа № 2