Микроклимат на рабочем месте и в производственном помещении. Микроклимат производственных помещений Как происходит измерение микроклимата

«Санитарные нормы проектирования промышленных предприятий» (СН 245—71). ГОСТ 12.1.005—76 «ССБТ. Воздух рабочей зоны».

Нормированные параметры микроклимата. Действующими нормативами параметров воздуха рабочей зоны производственных помещений являются «Санитарные нормы проектирования промышленных предприятий» (СН 245—71), утвержденные Госстроем СССР 5 ноября 1971 г.; ГОСТ 12.1.005—76 «ССБТ. Воздух рабочей зоны». Величины температуры, относительной влажности и скорости движения воздуха, устанавливаемые для рабочей зоны производственных помещений с учетом избытков явного тепла, тяжести выполняемой работы и периодов года, подразделяются на оптимальные и допустимые.

Оптимальные нормы микроклимата приведены в табл. 3, допустимые — в табл. 4 (для холодного и переходного времени года) и 5 (для теплого).

Таблица 3 Оптимальные нормы микроклимата

Примечание. Оптимальные нормы должны соблюдаться при кондиционировании воздуха.

Таблица 4 Допустимые нормы микроклимата для холодного и переходного времени года


Таблица 5 Допустимые нормы микроклимата для теплого времени года


* Большая скорость движения воздуха соответствует максимальной температуре воздуха, меньшая — минимальной.

** За температуру наружного воздуха следует принимать среднюю температуру в 13 часов самого жаркого месяца.

В приведенных таблицах термины и определения основных понятий надлежит понимать следующим образом.

Производственное помещение — замкнутое пространство в специально предназначенных зданиях и сооружениях, в которых постоянно (по сменам) или периодически (в течение рабочего дня) осуществляется трудовая деятельность людей, связанная с участием в различных видах производства, в организации, контроле и управлении производством, а также с участием во внепроизводственных видах труда на предприятиях транспорта, связи и т. п.

Периоды года подразделяются на теплый и холодный. Теплый период года характеризуется среднесуточной температурой наружного воздуха +10° С и выше, а холодный период года — среднесуточной температурой наружного воздуха ниже +10° С.

Полное тепло — это тепло, поступающее в рабочее помещение от оборудования, отопительных приборов, нагретых материалов, людей, в результате инсоляции и других источников тепла.

Явное тепло — это тепло, воздействующее на изменение температуры воздуха в помещении.

Избытками явного тепла называют остаточные количества тепла (за вычетом теплопотерь), поступающие в помещение при расчетных параметрах наружного воздуха после осуществления всех технологических, строительных, объемно-планировочных, санитарно-технических мероприятий по их уменьшению, а также после теплоизоляции и герметизации оборудования, установок и теплопроводов, устройству местных отсосов нагретого воздуха и т. п.

Незначительными избытками явного тепла считаются избытки (с учетом тепла от инсоляции), не превышающие или равные 20 ккал/(м 3 *ч) [(23 Дж/(м 3 *с)].

Значительными избытками явного тепла считаются избытки, превышающие 20 ккал/(м 3 *ч) . Помещения, цехи и участки со значительными выделениями явного тепла относятся к категории «горячих цехов».

В зависимости от общих энергозатрат организма работы подразделяются на легкие, средней тяжести и тяжелые физические работы.

Легкие физические работы (категория I) выполняются сидя, стоя, могут быть связаны с ходьбой, но не требуют систематического физического напряжения или поднятия и переноски тяжестей. Энергозатраты при их выполнении до 150 ккал/ч (172 Дж/с).

Физические работы средней тяжести (категория II) — имеют два подразделения: категория IIа, к которой относятся работы, связанные с постоянной ходьбой, выполняемые стоя или сидя, но не требующие перемещения тяжестей; категория IIб, к которой относятся работы, связанные с ходьбой и переноской небольших (до 10 кг) тяжестей. Энергозатраты при работах категории IIа от 150 до 200 ккал/ч (172— 232 Дж/с) и для категории IIб — от 200 до 250 ккал/ч (232—293 Дж/с).

В нормативах при определении метеорологических условий введено понятие микроклимат производственных помещений — это климат внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температуры окружающих поверхностей.

Нормативы определены раздельно для оптимальных и допустимых микроклиматических условий.

Оптимальные микроклиматические условия — это сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального функционального и теплового состояния организма без напряжения реакций терморегуляции. Они обеспечивают ощущение теплового комфорта и создают предпосылки для высокого уровня работоспособности.

Допустимые микроклиматические условия — это сочетание параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызывать преходящие и быстро нормализующиеся изменения функционального и теплового состояния организма и напряжение реакций терморегуляции, не выходящие за пределы физиологических приспособительных возможностей. При этом не возникают изменения состояния здоровья, но могут наблюдаться дискомфортные теплоощущения, ухудшение самочувствия и понижение работоспособности.

В нормативах стандарта (ГОСТ 12.1.005—76), определяющего параметры воздуха рабочей зоны, оговорена возможность следующих отклонений. В помещениях со значительными выделениями влаги допускается на постоянных рабочих местах повышение (на 10—20%) относительной влажности против утвержденных нормативами для теплого периода года, в зависимости от определенного ГОСТом тепловлажностного отношения, но не выше 75%. При этом температура воздуха в помещениях не должна превышать 28° С при легкой работе и работе средней тяжести и 26° С — при тяжелой работе.

В холодный и переходный периоды года в отапливаемых производственных помещениях, а также в помещениях со значительными избытками явного тепла, где на каждого работающего приходится от 50 до 100 м 2 площади пола, допускается понижение температуры воздуха вне постоянных рабочих мест против нормированных: до 12° С — при легких работах, до 10° С — при работах средней тяжести и до 8° С — при тяжелых работах. При этом на рабочих местах необходимо поддерживать метеорологические условия, установленные для холодного и переходного периодов года.

В случае, когда средняя температура наружного воздуха в 13 часов самого жаркого месяца превышает 25° С (23° С — для тяжелых работ), допустимую температуру воздуха в производственных помещениях на постоянных рабочих местах можно повышать при сохранении значений относительной влажности: на 3° (но не выше 31° С) — в помещениях с незначительными избытками явного тепла; на 5° (но не выше 33° С) — в помещениях со значительными избытками явного тепла.

При выполнении тяжелой физической работы все указанные величины превышения допустимых температур воздуха должны приниматься на 2° С ниже.

В холодный и переходный периоды года в производственных помещениях, в которых производятся работы средней тяжести и тяжелые, а также при применении системы отопления и вентиляции с сосредоточенной подачей воздуха, допускается повышение скорости движения воздуха до 0,7 м/с на постоянных рабочих местах при одновременном повышении температуры воздуха на 2° С.

Нормативные величины параметров микроклимата для рабочей зоны производственных помещений учитывают избыток явного тепла, Эти избытки могут возникнуть за счет излучений от нагретого и расплавленного металла, открытого пламени, горячих поверхностей оборудования, нагревательных приборов и т. д. Большой нагрев может создать лучистое тепло солнца, проникающее через световые проемы. Все источники тепловых излучений (помимо непосредственного воздействия на рабочих) нагревают строительные элементы помещения: стены, перекрытия, пол, оборудование. В результате температура воздуха в помещении повышается, что еще более ухудшает условия работы.

Санитарными нормами на постоянных рабочих местах воздействие лучистого тепла на работающих допускается до 1,25 МДж/(м 2 *ч). При воздействии лучистого тепла (1,25 МДж/(м 2 *ч) и более надлежит предусматривать воздушное душирование. Температуры и скорости движения воздуха при воздушном душировании приведены в таблице СН 245—71.

Лабораторная работа № 4

ИССЛЕДОВАНИЕ МИКРОКЛИМАТА НА РАБОЧЕМ МЕСТЕ

Цель работы: получить представление об основных параметрах микроклимата; изучить принципы нормирования микроклимата в помещениях; исследовать и оценить параметры микроклимата на рабочем месте.

Теоретическая часть

1. Микроклимат и его влияние на организм человека

Микроклимат – это совокупность параметров среды, влияющих на тепловые ощущения человека: температуры, влажности и скорости движения воздуха и интенсивности теплового излучения от окружающих поверхностей, характерных для конкретного помещения.

Микроклимат оказывает существенное влияние на работоспособность человека, его самочувствие и здоровье.

Необходимость учёта параметров микроклимата предопределяется условиями теплового баланса между организмом человека и окружающей средой помещений.

Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. Величина тепловыделений организма человека Q зависит от степени физического напряжения и параметров микроклимата. Для того чтобы физиологические процессы в его организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую человека среду. Нормальным тепловым ощущениям соответствует равенство между количествами выделяемого организмом человека и отдаваемого в окружающую среду тепла.



Теплообмен между организмом человека и окружающей средой осуществляется с использованием следующих процессов:

· теплопередача (теплопроводность) через одежду Q Т ;

· конвекция Q К ;

· тепловое излучение в окружающее пространство Q ИЗЛ ;

· испарение влаги (пота) с поверхности кожи Q ИСП ;

· дыхание (нагрев вдыхаемого воздуха) Q Д .

Теплопередача (теплопроводность) состоит в передаче тепла от одной частицы к другой при непосредственном контакте.

Конвекция представляет собой процесс теплообмена между телом человека и средой, осуществляемый движущимся воздухом. Конвективный теплообмен зависит от температуры окружающей среды, скорости движения воздуха, его влажности и барометрического давления.

Тепловое излучение представляет собой процесс теплообмена, осуществляемый путем испускания электромагнитных волн инфракрасного диапазона. Тепловые лучи непосредственно воздух практически не нагревают, но хорошо поглощаются твёрдыми телами и, следовательно, нагревают их. Нагреваясь, твёрдые тела сами становятся источниками тепла и уже путём конвекции нагревают воздух.

При температуре окружающей среды, равной или выше температуры поверхности тела человека, теплоотдача происходит только в виде выделения пота, на испарение 1 г которого затрачивается около 0,6 ккал. В состоянии покоя при температуре окружающего воздуха 18 °С доля Q К составляет около 30 % всей отводимой теплоты, Q ИЗЛ » 45 %, Q ИСП » 20 % и Q Д » 5 %.

При изменении температуры воздуха, скорости его движения и влажности, при наличии вблизи человека нагретых поверхностей, в условиях физической работы и т.д. эти соотношения существенно изменяются. Так, при высокой температуре воздуха (30 °С и выше), особенно при выполнении тяжёлой физической работы, потоотделение может усиливаться в десятки раз и достигать 1 – 1,5 л/ч.

Нормальное тепловое самочувствие человека (комфортные условия, соответствующие данному виду деятельности) обеспечивается, если выполняется условие теплового баланса:

Q Ч = Q Т + Q К + Q ИЗЛ + Q ИСП + Q Д,

где Q Ч – количество тепла, генерируемого организмом человека.

Температура внутренних органов человека поддерживается постоянной на уровне около 36,6 °С. Эта способность человеческого организма поддерживать постоянной температуру при изменении параметров микроклимата и при выполнении различной по тяжести работы называется терморегуляцией. Если тепловое равновесие нарушено (например теплоотдача меньше тепловыделений), то в организме происходит накопление тепла – перегрев. Если теплоотдача больше, чем тепловыделение, то происходит переохлаждение организма.

Комфортные метеорологические условия являются важным фактором обеспечения высокой производительности труда и профилактики заболеваний. При несоблюдении гигиенических норм микроклимата снижается работоспособность человека, возрастает опасность возникновения травм и ряда заболеваний, в том числе профессиональных.

Основные параметры микроклимата

Влажность воздуха . Влажность воздуха характеризует степень его насыщения водяными парами. Одна и та же температура воздуха в зависимости от степени его влажности ощущается человеком по-разному. Различают абсолютную и относительную влажность.

Абсолютная влажность (Р АБС ) – это количество водяного пара, содержащегося в 1 м 3 воздуха, т.е. плотность пара (г/м 3). Абсолютную влажность характеризуют также давлением водяного пара (гПа), т. е. парциальным давлением, которое оказывал бы водяной пар на стенки сосуда, если из данного сосуда удалить все другие компоненты воздуха.

Воздух с предельным содержанием водяного пара при данной температуре характеризуется давлением насыщенного пара (Р НАС ), которое увеличивается с повышением температуры воздуха. После достижения Р НАС начинается конденсация водяного пара.

Абсолютная влажность сама по себе не указывает на то, в насыщенном или ненасыщенном состоянии находится водяной пар, поэтому введено понятие относительной влажности.

Относительная влажность (φ ) определяется выражением:

φ = (P АБС /P НАС )·100, %. (1)

Относительная влажность влияет на теплообмен человека, например на интенсивность испарения влаги с поверхности кожи.

Температура воздуха оказывает большое влияние на состояние ор­­га­низма человека. Высокая температура окружающего воздуха повышает утомляемость, может привести к перегреву организма или вызвать тепловой удар. При небольшом перегреве возникают небольшое повышение температуры тела человека, обильное потоотделение, появляется ощущение жажды, учащаются дыхание и пульс. В более тяжёлых условиях может случиться тепловой удар, сопровождающийся повышением температуры до 40 – 41 °С, слабым и учащённым пульсом, потерей сознания. Характерным признаком наступления теплового удара является почти полное прекращение потоотделения. Тепловой удар может привести к смертельному исходу. Низкая температура окружающего воздуха может вызвать местное или общее переохлаждение организма человека, стать причиной простудных заболеваний или обморожения.

Скорость движения воздуха имеет большое значение для создания благоприятных условий жизнедеятельности. При большой скорости движения воздуха увеличивается интенсивность конвективного теплообмена. Если воздушные потоки имеют температуру ниже температуры поверхности кожи (30 - 33 °С), они оказывают освежающее действие на организм человека, а при температуре свыше 37 °С действуют угнетающе. Организм человека начинает ощущать воздушные потоки при скорости около 0,15 м/с.

Тепловое излучение от нагретых поверхностей играет немаловажную роль в создании неблагоприятных микроклиматических условий. Действие лучистого тепла не ограничивается изменениями, происходящими на облучаемом участке кожи, – на облучение реагирует весь организм. В организме возникают биохимические изменения, нарушения в сердечно-сосудистой и нервной системах. При длительном воздействии инфракрасных лучей может возникнуть катаракта глаз (помутнение хрусталика).

Тепловые ощущения человека зависят от сочетания микроклиматических параметров и от напряженности физической работы.

Для оценки комплексного влияния параметров микроклимата на организм человека при малых энергозатратах используется метод эквивалентно-эффективных температур. Этот метод позволяет на основании данных о параметрах микроклимата судить о тепловом состоянии человека. Для его использования введено понятие эквивалентно-эффективной температуры (ЭЭТ ), которая характеризует тепловое ощущение человека при одновременном воздействии температуры, влажности и скорости движения воздуха. ЭЭТ оценивается температурой неподвижного воздуха 100 % -ой относительной влажности, при которой тепловое ощущение человека такое же, как и при заданном сочетании температуры, влажности и скорости движения воздуха.

Область ЭЭТ в интервале температур от 17 до 22 °С соответствует зоне комфорта , внутри которой можно выделить линию комфорта, соответствующую ЭЭТ = 19 °С, при которой почти у всех исследуемых людей возникает ощущение комфорта.

На рисунке приведена номограмма, позволяющая определить влияние параметров микроклимата на тепловое ощущение человека.

3. Нормирование параметров микроклимата

Нормируемыми параметрами микроклимата в производственных помещениях являются: температура воздуха; относительная влажность воздуха; скорость движения воздуха; температура поверхностей помещения (стены, потолок, пол) и технологического оборудования; интенсивность теплового облучения. При нормировании параметров микроклимата учитывают интенсивность энергозатрат работающих (категорию работ по тяжести), период года, время пребывания на рабочих местах .

При этом различают оптимальные и допустимые микроклиматические условия.

Оптимальные микроклиматические условия представляют такие сочетания параметров микроклимата, которые обеспечивают ощущение теплового комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции

Допустимые микроклиматические условия могут приводить к ощущению теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и работоспособности. При условии 8-часовой рабочей смены они не вызывают повреждений или нарушений состояния здоровья. Допустимые значения параметров микроклимата устанавливают в случаях, когда по технологическим требованиям, техническим и экономически обоснованным причинам не могут быть обеспечены оптимальные значения.

Номограмма эквивалентно-эффективных температур

В зависимости от энергозатрат в единицу времени работы подразделяются на следующие категории.

¨ Лёгкие физические работы (категория I ) – виды деятельности с интенсивностью энергозатрат до 174 Вт.

К категории относятся работы, производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением с интенсивностью энергозатрат 140 – 174 Вт.

¨ Физические работы средней тяжести (категория II ) – виды деятельности с интенсивностью энергозатрат 175 – 290 Вт.

К категории IIa относятся работы, связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения с интенсивностью энергозатрат 175 – 232 Вт.

К категории IIб относятся работы, связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением с интенсивностью энергозатрат 233 – 290 Вт.

¨ Тяжёлые физические работы (категория III ) – виды деятельности с интенсивностью энергозатрат с расходом энергии более 290 Вт. Эти работы связаны с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий.

При нормировании различают два периода года: холодный (со среднесуточной температурой наружного воздуха +10 °С и ниже) и тёплый (со среднесуточной температурой наружного воздуха выше +10 °С).

В табл. 1 приведены оптимальные (в скобках – допустимые) значения параметров микроклимата на постоянных рабочих местах производственных помещений.

Интенсивность теплового облучения учитывается, если в производственных помещении имеются источники тепла, нагретые до высокой температуры .

Реферат на тему:

«ОБЩИЕ ТРЕБОВАНИЯ К МЕТОДАМ ИЗМЕРЕНИЯ МИКРОКЛИМАТА И ИХ ОЦЕНКИ»

Введение

Измерение параметров микроклимата проводится на рабочих местах и рабочей зоне в начале, в середине и в конце рабочей смены. При колебаниях микроклиматических условий, связанных с технологическим процессом и другими причинами измерения, проводятся с учетом наибольших и наименьших величин термических нагрузок на протяжении рабочей смены.

Измерения выполняются не менее 2-х раз в год (в теплые и холодные периоды года) санитарным надзором, а также, при принятии в эксплуатацию нового технологического оборудования, внесении технических изменений в конструкцию действующего оборудования, организации новых рабочих мест и т. д.

При проведении измерений в холодный период года температура наружного воздуха не должна превышать среднюю расчетную температуру, в теплый период – не ниже средней расчетной температуры, принятой для отопления и кондиционирования согласно оптимальным и допустимым параметрам.

Измерение параметров микроклимата на рабочих местах проводятся на высоте 0,5-1,0 м. от пола – при работе сидя, 0,5м. от пола – при работе стоя.

В помещении с большой плотностью рабочих мест при отсутствии источников локального тепловыделения, охлаждения и влаговыделения измерения проводятся, равномерно по всему помещению. При этом, в помещении до 100 м 2 должно быть не менее 4х зон оценки, а площадью до 400 м 2 – не менее 8. В помещениях площадью свыше 400 м 2 – количество замеров определяется расстоянием между ними, которое не превышает 10 м.

При наличии нескольких источников инфракрасного излучения на рабочем месте производится определение направления максимума потока от источника. Измерения выполняются через каждые 30-45 0 С вокруг рабочего места для определения максимального облучения. При этом, приемник прибора располагают перпендикулярно падающему потоку энергии.

Приборы для измерения температуры

Для измерения температуры воздуха в обычных условиях применяются термометры ртутные или спиртовые.При измерении температуры выше 0 0 С следует пользоваться ртутными термометрами, т.к. ртуть при нагревании расширяется равномерно, а спирт – неравномерно. При температуре ниже 0 0 С ртуть густеет, поэтому рекомендуется применять спиртовые термометры. В случае необходимости регистрации температуры окружающего воздуха во времени, применяются термографы. Приемной частью термографов М-16С и М-16Н является изогнутая биметаллическая пластинка, связанная при помощи рычага и стрелки с пером. Запись температуры проводится на ленте, опоясывающей барабан, продолжительность одного оборота составляет для М-16С – 26 ч, для М-16Н – 176 ч. Для измерения температур при наличии тепловых излучений применяют парные термометры.

Термоанемометры типа ТА-8М и ЭА-2М используется как для определения температуры, так и для определения скорости движения воздуха.

Интенсивность тепловых излучений можно определить актинометром , принцип работы которого основан на термоэлектрическом эффекте (при неравенстве температур в контактах замкнутой электрической цепи возникает ток, величина которого пропорциональна разности температур на термопарах) или парном термометре.

Приборы для измерения температуры воздуха не должны обладать погрешностью более 5% при измерении продолжительностью не более 5 мин (рис.2.2.2.и 2.2.3.).

Приборы для измерения влажности воздуха

Для измерения влажности применяется психрометры , которые состоят из двух ртутных термометров: сухого и влажного. Резервуар влажного термометра окутан марлей или другой гигроскопической материей, конец которой опущен в воду. За счет испарения влаги температура на влажном термометре понижается. Отличие в показаниях влажного и сухого термометров тем больше чем меньше относительная влажность и обусловлено отводом тепла от влажного термометра за счет испарения влаги. Только при относительной влажности равной 100% показания термометров совпадают.

Относительную влажность определяют по выведенным формулам пересчета или номограмме, зная показания холодного и влажного термометров.

Рис. Приборы для измерения параметров микроклимата

а - термограф: 1.- барабан; 2 - указатель; 3 - пластина биметаллическая;

б - психрометр Августа: 1 - «сухой» термометр; 2 - «влажный» термометр;

3 - марля; 4 - кювета с водой; в - аспирационный психрометр;

г - чашечный анемометр.

Для прямого определения относительной влажности используют гигрометры, принцип работы которых основан на способности человеческого волоса, изменять свою длину во влажном и сухом воздухе. Для регистрации изменения относительной влажности во времени используют самопишущие приборы и гигрографы.

Рис. Термоанемометр:

1 – датчик; 2 – термопара; 3 – реостат; 4 – батарея нагрева; 5 –гальванометр.

Приборы для измерения скорости движения воздуха

Замер скорости движения воздуха проводят различными видами анемометров: крыльчатыми, типа АСО-3 (скорость потока от 0,3 до 0,5 м/с), чашечными, типа МС-13 и индукционными, типа АРН-49 (скорость в пределах 1-20 м/с), термоанемометрами и кататермометрами (скорость не больше 0,5м/с). Термоанемометры позволяют измерять незначительные колебания потоков воздуха и температуры по объему помещения.

Для измерения интенсивности теплового излучения используют актинометры и радиометры.

Измерение абсолютного давления воздуха производится барометрами и барографами. Барометры могут быть по принципу действия: ртутные, пружинные и специальные анероиды.

Параметры микроклимата оцениваются:

Как оптимальные, если средние значения и результаты не менее 2/3 измерений находятся в пределах оптимальных величин;

Как допустимые, если средние значения и результаты не менее 2/3 измерений находятся в пределах допустимых величин;

Как несоответствующие, если средние значения и результаты более 2/3 измерений не соответствуют допустимым.

Комплексную оценку состояния микроклимата при изменяющихся одновременно параметрах производят по величине эквивалентно-эффективной температуры. Эквивалентно-эффективная температура это такая температура воздуха, которая соответствует определенному сочетанию трех параметров микроклимата. Их сочетание может создавать комфортные или дискомфортные микроклиматические условия, которые ведут к перегреву или переохлаждению организма. Оценить метеорологические условия можно по температуре сухого и влажного термометров и по скорости движения воздуха, используя номограмму для рабочей зоны производственных помещений (рис 2.2.4.).

В настоящее время установлены диапазоны возможных сочетаний температуры и скорости движения воздуха в производственных помещениях в теплый период для различной производственной одежды. При повышении температуры воздуха от26 до 28 0 С скорость воздуха должна увеличиться от 0,5 до 3м/с. Но всегда можно подобрать скорость движения воздуха и его относительную влажность, когда сочетание трех параметров составляет комфортные условия при данной температуре.

Предметом дальнейших исследований по созданию комфортных микроклиматических условий - определение верхних и нижних пределов значений параметров микроклимата, что позволит обеспечить не только безопасность труда, но и сэкономить энергоресурсы на отопление, вентиляцию и кондиционирование воздуха рабочих зон.


ОСНОВНЫЕ МЕРЫ ПРОФИЛАКТИКИ И НОРМАЛИЗАЦИИ УСЛОВИЙ МИКРОКЛИМАТА

Изменение метеорологических условий на рабочем месте ведет к изменению производительности труда, накоплению утомления и ослаблению организма и, как следствие, к возникновению несчастных случаев и проф. заболеваний.

Поддержание нормальной жизнедеятельности людей производится за счет целого комплекса мероприятий, которые можно свести к следующим группам: архитектурно-проектные; организационно-технические; санитарно-гигиенические; лечебно-профилактические.

Архитектурно-проектировочные решения включают: проектирование и размещение зданий и сооружений с учетом их назначения в зависимости от месторасположения; проектирование и размещение помещений с учетом характера деятельности, а также метеоусловий и изменения микроклиматических параметров в процессе производства.

При разработке генпланов необходимо уточнить ветровую нагрузку района, направление и скорость ветра, температуру наружного воздуха, влажность. Необходимо учитывать ориентацию световых проемов помещений по сторонам горизонта, поскольку южная сторона получает большую солнечную радиацию и инфракрасное излучение, а ориентированные в северном направлении помещения плохо освещены и даже в дневное время в зимний период требуются дополнительные источники освещения. Для зданий в южных районах (с расчетными температурами наружного воздуха в 13 часов самого жаркого месяца +25 0 С и выше) рекомендуется предусмотреть мероприятия по инсоляции (козырьки, лоджии, открытые галереи, и т.д.).

К организационно-техническим мероприятиям относятся: усовершенствование технологического оборудования и технологических процессов; рациональное размещение технологического оборудования; автоматизация и дистанционное управление технологическими процессами; уменьшение избыточного выделения тепла технологических аппаратов; защита рабочих мест от прямого действия лучистого тепла, снижение вредных выбросов тепловых выделений (переход от горячей обработки к холодной, разогрев индуктивным способом, изоляция печей и других тепловых агрегатов).

Стандарты СанПиН о микроклимате в производственных помещениях едины для любых помещений и для всех работ? Кто и как эти параметры (температура, влажность, давление, шумовой фон) должен замерять? Достаточно ли для этого установить в офисе мини-метеостанцию, или нужно вызывать специалистов СЭС либо какой-нибудь организации? Какие обязательства в этом случае несет арендодатель, или это целиком забота арендатора помещения?

СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений», утвержденные постановлением Госкомсан­­­­­­э-­­­­­пиднадзора России от 01.10.96 № 21, устанавливают стандарты, единые для любых видов рабочих помещений. Однако эти требования дифференцируются в зависимости от типа работы — например, для работ, сопряженных с большей физической активностью, ниже порог предельно допустимого уровня жары.

В приложении 1 к СанПиН 2.2.4.548-96 устанавливаются пять категорий работ в зависимости от интенсивности энерготрат организма при их осуществлении 1 .

1. К категории Iа относятся работы с интенсивностью энерготрат до 120 ккал/ч - это работы, производимые сидя и сопровождающиеся незначительным физическим напряжением (на предприятиях точного приборостроения, на часовом, швейном производствах, в сфере управления и т.п. - именно к этой категории можно отнести труд большинства офисных работников).

2. К категории Iб относятся работы с интенсивностью энерготрат 121­-
150 ккал/ч, производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением (в полиграфической промышленности, на предприятиях связи, работа контролеров, мастеров в различных видах производства и т.п.).

3. К категории IIа относятся работы с интенсивностью энерготрат 151-200 ккал/ч, связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения (в механосборочных цехах машиностроительных предприятий, в прядильно-ткацком производстве и т.п.).

4. К категории IIб относятся работы с интенсивностью энерготрат 201-250 ккал/ч, связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением (в механизированных литейных, прокатных, кузнечных, термических, сварочных цехах машиностроительных и металлургических предприятий и т.п.).

5. К категории III относятся работы с интенсивностью энерготрат более 250 ккал/ч, связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий (в кузнечных цехах с ручной ковкой, литейных цехах с ручной набивкой и заливкой и т.п.).

Таблица 1. Оптимальные параметры микроклимата производственных помещений

Период

года

Температура воздуха,

Относительная влажность воздуха, %

Скорость движения воздуха, м/с

Холодный

Пунктом 1 ст. 32 Федерального закона от 30.03.99 № 52-ФЗ «О санитарно-эпидемиологическом благополучии населения» обязанность осуществления производственного контроля за соблюдением санитарных правил возлагается на работодателя. Именно работодатель своим приказом назначает из числа сотрудников ответственное лицо (группу лиц), которое обязано регулярно осуществлять измерения показателей микроклимата в соответствии с требованиями СанПиН 2.2.4.548-96. Государственные контролирующие органы проверяют лишь сам факт наличия в организации службы контроля за микроклиматом и соответствие методов измерения законодательным требованиям, основные из которых изложены ниже.

В СанПиН 2.2.4.548-96 указано, что измерения показателей микроклимата следует проводить на рабочих местах. Если рабочим местом является несколько участков производственного помещения, то измерения осуществляются на каждом из них. Например, в помещении площадью 300 кв.м измерения нужно осуществлять на восьми участках, соответственно для этого потребуется восемь комплектов приборов (табл. 2).

Таблица 2. Минимальное количество участков измерения температуры,
относительной влажности и скорости движения воздуха

Температуру и относительную влажность воздуха при наличии источников теплового излучения и воздушных потоков на рабочем месте следует измерять аспирационными психрометрами. При отсутствии в местах измерения лучистого тепла и воздушных потоков температуру и относительную влажность воздуха можно измерять психрометрами, не защищенными от воздействия теплового излучения и скорости движения воздуха. Могут использоваться также приборы, позволяющие раздельно измерять температуру и влажность воздуха.

Скорость движения воздуха следует измерять анемометрами вращательного действия (крыльчатые, чашечные и др.). Малые величины скорости движения воздуха (менее 0,5 м/с), особенно при наличии разнонаправленных потоков, можно измерять термоэлектроанемометрами, а также цилиндрическими и шаровыми кататермометрами при защищенности их от теплового излучения.

Температуру поверхностей следует измерять контактными приборами (типа электротермометров) или дистанционными (пирометры и др.).

Интенсивность теплового облучения следует измерять приборами, обеспечивающими угол видимости датчика, близкий к полусфере (не менее 160°), и чувствительными в инфракрасной и видимой области спектра (актинометры, радиометры и т.д.) (табл. 3).

Таблица 3. Требования
к измерительным приборам

Наименование

показателя

Диапазон

измерения

Предельное отклонение

Температура воздуха по сухому термометру, °C

от –30 до 50

Температура воздуха по смоченному термометру, °C

Температура

поверхности, °C

Относительная

влажность воздуха, %

Скорость движения воздуха, м/с

от 0 до 0,5
более 0,5

+/– 0,05
+/– 0,1

Интенсивность

теплового облучения, Вт/кв. м

от 10 до 350
более 350

+/– 5,0
+/– 50,0

По результатам исследования необходимо составить протокол, в котором должны быть отражены общие сведения о производственном объекте, размещении технологического и санитарно-технического оборудования, источниках тепловыделения, охлаждения и влаговыделения, приведены схема размещения участков измерения параметров микроклимата и другие данные.

Законодательные требования к микроклимату на рабочем месте возлагают обязанности по поддержанию соответствующего микроклимата исключительно на работодателя.

В том случае, если работодатель арендует рабочие помещения, на арендодателя аналогичные обязательства не распространяются.

Именно работодатель несет ответственность за соблюдение требований к микроклимату на рабочем месте. Нарушение работодателем этих требований может быть обжаловано работником в суде. Кроме того, в соответствии со ст. 353 ТК РФ работник может обратиться за защитой своих трудовых прав в прокуратуру и федеральную инспекцию труда (Федеральную службу по труду и занятости). Соответствующее заявление можно подать как с помощью сайта данных учреждений, так и при личном обращении в их территориальные органы.

За нарушение законодательства о труде и об охране труда ст. 5.27 КоАП РФ установлена административная ответственность. Должностных лиц могут обязать уплатить штраф в размере от 1000 до 5000 руб., юридических лиц - от 30 000 до 50 000 руб. При этом вместо уплаты штрафа в отношении юридических лиц возможно административное приостановление их деятельности на срок до девяноста суток.

Метеорологические условия на рабочих местах определяются интенсивностью теплового облучения, температурой воздуха, относительной влажностью и скоростью движения воздуха, температурой поверхности.

Эти параметры воздушной среды во многом влияют на самочувствие человека. Организм человека обладает свойствами терморегуляции. Температура тела постоянна, т.к. излишнее тепло отдается окружающей среде с помощью конвекции, излучения или испарения выделяющего пота при перегревах.

Нарушение терморегуляции приводит к головокружениям, тошноте, потере сознания и тепловому удару.

При температуре воздуха до +30° С отдача тепла с тела осуществляется за счет конвекции и излучения. При Т > 30° С большая часть тепла отдается путем испарения. Повышенная влажность (>75 %) затрудняет терморегуляцию, т.к. уменьшает испарение.

Особо опасна высокая температура при повышенной влажности. Наступает утомление, расслабление, потеря внимания.

Движение воздуха улучшает терморегуляцию при работе, т.к. увеличивается отдача тепла конвекцией, но при низкой температуре это уже неблагоприятный фактор.

Таким образом, для теплового самочувствия человека важно определенное сочетание температуры, относительной влажности и скорости движения воздуха на рабочем месте.

Оптимальные метеоусловия:

Влажность воздуха - 40¸60 %;

Скорость воздуха - 0,1¸0,5 м/с зимой и в два раза выше летом;

Давление воздуха - 760 мм ртутного столба;

Оптимальное значение температуры +20 °С (зависит от сезона и тяжести работы).

Мероприятия по оздоровлению воздушной среды - механизация и автоматизация, герметизация, вентиляция, кондиционирование, тепловые экраны, воздушные и водяные завесы, отопление, индивидуальные средства защиты, организация рационального отдыха, в горячих цехах снабжение рабочих подсоленной питьевой или газированной водой.

Вентиляция

Вентиляция является важнейшим средством, обеспечивающим нормальные санитарно - технические условия в производственных помещениях. Вентиляция достигается удалением загрязненного или нагретого воздуха из помещения и подачей в него свежего воздуха. По способу перемещения воздуха вентиляция бывает естественная и механическая. Возможно сочетание естественной и механической вентиляции. По назначению вентиляция может быть приточной, вытяжной, приточно-вытяжной; по месту действия - общеобменной, местной. Приток воздуха в помещение и вытяжка по объему не должны отличаться более чем на ± 10 %. Необходимое количество воздуха при общеобменной вентиляции определяют следующим образом.

1 При выделении паров или газов в помещении Á (мг/ч) необходимое количество воздуха Q(м 3 /ч) определяют, исходя из разбавления до допустимых концентраций q(мг/м 3). Количество приточного или удаляемого воздуха равно

Q = Á / (q выт - q пр) (3.1)

где q пр, q выт - концентрация вредных веществ в приточном и удаляемом

Если наружный воздух не содержит вредных веществ, то Q = Á/q выт.

По санитарным нормам q пр £ 0,3×q пдк

где q пдк - санитарная норма предельно допустимой концентрации вредных веществ в воздухе.

2 Для ориентировочных расчетов, когда неизвестны виды и количество выделяющихся вредных веществ, необходимое количество воздуха определяется по кратности воздухообмена. Кратность воздухообмена К (1/ч) показывает, сколько раз в час меняется воздух в помещении.

Количество воздуха

где V - объем помещения, м 3 ;

Естественная вентиляция осуществляется за счет разности плотностей теплого воздуха, находящегося в помещении, и более холодного воздуха, находящегося снаружи. Регулируемый воздухообмен (аэрация) осуществляется с помощью фрамуг, через которые поступает наружный воздух, а внутренний, более теплый воздух, выходит через вытяжные фонари, устанавливаемые на крыше здания. Бесканальная аэрация может осуществляться при помощи отверстий в стенах и потолке. Канальная аэрация осуществляется при помощи каналов, сооружаемых в стенах здания. Для усиления движения воздуха на крыше здания устанавливают камеры – патрубки (дефлекторы), располагаемые на верхней части вытяжной трубы или шахты, в которых под действием ветра возникает тяга воздуха.

Достоинство аэрации - отсутствие механических вентиляторов, значительно дешевле механических систем вентиляции.

Недостаток аэрации: снижается эффективность в летнее время, не происходит очистки воздуха, возможны сквозняки.

Для очистки воздуха применяют пылеуловители (циклоны, электрофильтры, фильтры из пористого фильтрующего материала, туманоуловители, адсорберы, каталитическое дожигание и т.д.).

3.2Производственное освещение

Сохранение зрения человека, состояния его центральной нервной системы и безопасность на производстве в значительной мере зависят от условий освещения. От освещения зависят также производительность труда и качество выпускаемой продукции. Для оценки условий освещения пользуются понятием освещенности Е , лк. Освещенность измеряют люксметрами.

На производстве применяют естественное и искусственное освещение.

Естественное освещение разделяется на боковое (световые проемы в стенах), верхнее (прозрачные перекрытия или световые фонари), комбинированное, когда к верхнему освещению добавляется боковое.

Естественное освещение характеризуется коэффициентом естественной освещенности е , %

где Е в - освещенность внутри помещения, лк;

Е н - одновременная освещенность рассеянным светом снаружи, лк.

Нормированное значение е определяется по СНиП РК 2.04-05-2002 «Естественное и искусственное освещение. Нормы проектирования» с учетом характера зрительной работы, системы освещения, района расположения здания на территории РК и ориентации здания к солнцу. Чистку стекол световых проемов необходимо проводить не реже 2-4 раз в год в зависимости от характера запыленности производственного помещения.

Искусственное освещение, осуществляемое газоразрядными и электрическими лампами, по конструктивному исполнению может быть двух систем - общее освещение и комбинированное (общее и местное). Освещенность рабочей поверхности, создаваемая светильниками общего освещения в системе комбинированного, должна составлять не менее 10 % нормируемой для комбинированного освещения. Общее освещение подразделяется на общее равномерное, общее локализованное. Применение одного местного освещения внутри зданий не допускается. По функциональному назначению искусственное освещение делится на следующие виды: рабочее, охранное, дежурное.

Аварийное освещение бывает двух видов: освещение безопасности, эвакуационное освещение.

Освещение безопасности должно быть предусмотрено во всех случаях, если действия людей в темноте могут явиться причиной взрыва, пожара, травматизма, привести к длительному расстройству технологического процесса. Светильники такого освещения должны создавать на рабочих поверхностях не менее 5 %освещенности, нормируемой для рабочего освещения при системе общего освещения.

Аварийное освещение для эвакуации людей устраивается при наличии опасности возникновения травматизма. Светильники такого освещения должны обеспечивать по линии основных проходов в помещениях освещенность не менее 0,5 лк.

Светильники освещения безопасности присоединяются к независимому источнику питания (генератор; аккумуляторные батареи; трансформаторы, питаемые от разных электрических сетей), а светильники для эвакуации людей - к сети, независимой от рабочего освещения, начиная от щита подстанции.

В соответствии со СНиП РК 2.04-05-2002 «Естественное и искусствен-ное освещение. Нормы проектирования для освещения помещений следует предусматривать газоразрядные лампы (люминесцентные, натриевые и т.д.). В случае невозможности применения газоразрядных источников света допускается использование ламп накаливания.

Люминесцентные лампы по сравнению с лампами накаливания имеют преимущества: по спектральному составу света они близки к естественному освещению, обладают более высоким КПД, повышенной светоотдачей и большим сроком службы (до 8¸12 тыс. часов).

Искусственное освещение нормируется, исходя из характеристики работ, при этом задаются как количественные (минимальная освещенность, допустимая яркость), так и качественные характеристики (показатель ослепленности, коэффициент пульсации освещенности, спектр излучения).

Минимальная освещенность устанавливается согласно условиям зрительной работы, которые определяются наименьшим размером объекта различения, контрастом объекта с фоном (большой, средний, малый) и характеристикой фона (темный, средний, светлый).

3.2.1 Методика расчета осветительных установок

Расчет освещения производственных помещений являет­ся комплексной задачей, в процессе решения которой определяются высота, уста­новки, размещение, число светильников, а также мощность ламп, необходимых для создания требуемых осветительных установок. Выбор числа, мощности и расположения светильников следует производить на основании типовых реше­ний для освещаемых помещений и лишь при отсутствии таковых - на основе све­тотехнического расчета.

3.2.2 Размещение светильников

При системе общего освещения светильники можно размещать над осве­щаемой поверхностью либо равномерно, либо локализовано. При равномерном освещении светильники располагают правильными симметричными рядами, создавая при этом относительно равномерную освещенность по всей площади. При локализованном освещении светильники располагаются индивидуально для каждого рабочего места или участка производственного помещения, созда­вая при этом требуемые освещенности только на рабочих местах.

Минимальная высота подвеса светильника над освещаемой поверхностью определяется условиями ограничения ослепленности. При общем равномерном освещении выгоднейшими вариантами расположения светильников с лампами накаливания и лампами ДРЛ является расположение их по углам прямоуголь­ника или шахматное расположение, а при расположении светильников по углам квадрата или по углам равностороннего треугольника получается наиболее равномерное распределение освещенности по всей площади помещения. Выбор расстояния между светильниками зависит от типа светильника, высоты его подвеса над рабочей поверхностью, а иногда способ расположения светильни­ков зависит от архитектурных или строительных условий.

Высота установки светильников общего освещения обусловливается многими факторами: высотой самих помещений и наличием в их верхней зоне каких-либо частей производственного оборудования, транспортных средств и инженерных коммуникаций (подвесных транспортеров и конвейеров, мостовых кранов, кран-балок, монорельсовых путей для тельферов, вентиляционных коробов, трубопроводов различного назначения и т.п.), характером, размещением и высотой производственного оборудования, а также расположением рабочих зон и других мест, требующих освещения.

3.2.3 Расчет искусственного освещения

Основной задачей расчета искусственного освещения является определение числа светильников или мощности ламп для обеспечения нормированного значения освещенности.

Для расчета искусственного освещения используют один из трех методов: по коэффициенту использования светового потока, точечный и метод удельной мощности. При расчете общего равномерного освещения основным является метод использования светового потока, создаваемого источником света, и с учетом отражения от стен, потолка, пола. Расчет освещения начинают с выбора типа светильника, который принимается в зависимости от условий среды и класса помещений по взрывопожароопасности.

3.2.4 Расчет освещения методом коэффициента использования светового потока

Для помещений, в которых предусматривается общее равномерное освещение горизонтальных поверхностей, освещение рассчитывают методом коэффициента использования светового потока.

По этому методу расчетную освещенность на горизонтальной поверхности определяют с учетом светового потока, падающего от светильников непосредственно на поверхность и отраженного света от стен, потолка и самой поверхности. Так как этот метод учитывает долю освещенности, создаваемую отраженным световым потоком, его применяют для расчета помещений, где отраженный световой поток играет существенную роль, т.е. для помещений со светлыми потоками и стенами при светильниках рассеянного, отраженного света.

Отношение светового потока, опадающего на расчетную поверхность, ко всему потоку, излучаемому светильниками, установленными в помещении, называется коэффициентом использования светового потока в осветительной установки:

(3.4)

где - световой поток, падающий от светильников на непосредственно освещаемую поверхность, лм;

Ф отр - отраженный световой поток, падающий на ту же освещаемую поверхность, лм;

Ф л - световой поток каждой лампы, лм;

п - число ламп в освещаемом помещении.

Величина коэффициента использования всегда меньше единицы, т.к. ве­личина пФ л всегда больше величины Ф р ввиду того, что некоторая часть свето­вого потока поглощается осветительной арматурой, стенами и потолком.

На величины коэффициента использования влияют следующие факторы:

Тип и к.п.д. светильника. Чем больше выбранный светильник направляет световой поток непосредственно на освещаемую поверхность , тем больше коэффициент использования, тем меньше потери в нем, следовательно, больше коэффициент использования;

Геометрические размеры помещения. Чем больше освещаемая поверх­ность по сравнению с отражающими, тем выше коэффициент использования, т.к. при этом возрастает ;

- высота подвеса светильника над освещаемой поверхностью. Чем выше подвешены светильники над освещаемой поверхностью, тем больше светового потока поглощается стенами и потолком, следовательно, коэффициент исполь­зования уменьшается;

Окраска стен и потолка. Чем светлее окраска стен и потолка, тем выше коэффициент отражения и Ф отр возрастает, а следовательно, возрастает и коэф­фициент использования.

Зависимость η от площади помещения, высоты и формы, возможно учесть одной комплексной характеристикой - индексом помещения.

Индекс помеще­ния рассчитывается из выражения

(3.5)

где А, В, S - соответственно длина, ширина и площадь помещения.

Если предварительно выбран тип светильников, определено их располо­жение и число, то по расчетному потоку ИС определяют ближайшее стандарт­ное значение мощности лампы.

При расчетах освещения по любому методу отклонения светового потока выбираемой стандартной лампы при нормативной освещенности допускается в пределах от + 20% до -10% от значения, полученного по расчету.

Расчетный поток ИС определяется по формуле

(3.6)

где N - число ИС;

К - коэффициент запаса;

z - коэффициент минимальной освещенности (отношение средней ос­вещенности и минимальной).

В расчетах коэффициент z принимается равным: 1,15 - для светильников, располагаемых по вершинам прямоугольных полей; 1,1 - для светильников с ЛЛ, располагаемых рядами. Обычно таким способом ведется расчет, если в качестве ИС используются ЛН или РЛ высокого давления.

Если выбран тип светильников и задана мощность ламп, то число светиль­ников может быть определено из выражения

. (3.7)

После нахождения числа светильников и мощности ламп, удовлетворяющих нормированной освещенности, производят проверку варианта осветительной ус­тановки по качественным показателям освещения: не будет ли установка оказы­вать недопустимое слепящее действие на людей, работающих или находящихся в помещении, и какова глубина пульсации освещенности при использовании в ка­честве источника света газоразрядных ламп.

3.2.5 Расчет освещения методом удельной мощности

Частным случаем метода коэффициента использования светового потока является расчет по методу удельной мощности (w).

Метод расчета по удельной мощности используется в следующих случа­ях: для предварительного определения установленной мощности осветительной установки; для приблизительной оценки правильности проведения светотехни­ческого расчета; при проектировании освещения небольших и средних поме­щений, не требующих точных работ.

Исходными данными для проектирования является тип выбранного све­тильника, минимальная освещенность, высота и площадь помещения. В спра­вочниках для различных нормируемых освещенностей, площади помещения и вы­соты h приведены значения w . Предварительно намечают число светильников, по таблицам справочника определяют w, а затем определяют мощность лампы по формуле

Полученное значение мощности лампы округляют до ближайшего стан­дартного. Для ламп типа ДРЛ можно пренебречь зависимостью световой отдачи от номинальной мощности лампы. В таком случае между освещенностью и удельной мощностью существует прямая пропорциональная зависимость, и в целях сокращения объема таблиц уместно составлять их для освещенности 100 лк с пропорциональным пересчетом в других случаях.

3.2.6 Расчет освещенности точечным методом

Определение освещенности от точечного источника. Пусть требуется определить освещенность в точке А горизонтальной плоскости от светильника О, имеющего кривую распределения сил света, показанную на рисунке 3.1.

Рисунок 3.1- Схема к расчету освещенности точечным методом

Источник света Q освещает горизонтальную поверхность Q. Требуется определить освещенность Е г в точке А, находящейся на расстоянии R от источника света (см. рисунок 3.1).

На основании известного соотношения между освещенностью и силой света, освещенность в точке А определяется уравнением

(3.9)

где I α - сила света в направлении рассматриваемой точки;

k з – коэффициент запаса.

Расстояние R можно выразить через высоту подвеса светильника над расчетной поверхностью h p:

Следовательно, горизонтальная освещенность в точке А от одного светильника определяется следующей формулой:

. (3.11)

Расчет горизонтальной освещенности производится в такой последовательности:

1) Определяем tgα по заданной высоте подвеса светильника из выражения

где d – расстояние от проекции оси светильника на плоскость до расчетной точки (величина d измеряется по плану), м.

2) По найденному тангенсу угла α из таблицы тригонометрических величин определяют угол α и cos 3 α.

3) Из кривой силы света выбранного типа светильника с условной лампой F л =1000 лм приводятся в светотехнических справочниках. В некоторых справочниках вместо кривых даются таблицы значений силы света стандартных светильников в зависимости от угла.

4) По расчетной формуле определяют условную горизонтальную освещенность Е / АГ (для лампы в 1000 лм ).

5) Условную освещенность, полученную по формуле (3.11), пересчитывают с учетом потока лампы, установленной в светильнике:

(3.13)

где F л – световой поток лампы по ГОСТу.

Если точка А на поверхности Q освещается несколькими светильниками, тогда расчетная формула для определения фактической освещенности в точке А от нескольких светильников принимает следующий вид:

(3.14)

где μ – коэффициент, учитывающий освещенность от удаленных светильников и отраженный световой поток от стен, потолка и расчетной поверхности.

Этот коэффициент вводится как поправочный, чтобы избежать завышения мощности ламп. При эмалированных светильниках прямого света μ=1,1-1,2. При зеркальных μ=1,0. При светильниках преимущественно прямого света μ=1,3-1,6.

Для создания средней освещенности 100 лк на каждый квадратный метр освещаемой площади при светлых потолках и стенах требуется

удельная мощность 16¸20 Вт/м 2 при прямом освещении лампами накаливания и 6¸10 Вт/м 2 при прямом освещении люминесцентными лампами. Можно пользоваться данными специальных таблиц.

Чистку светильников проводят 4¸12 раз в год в зависимости от запыленности помещения. Замену ламп обычно производят индивидуально и групповым методом (через определенный срок работы). На крупных предприятиях при установленной общей мощности на освещение (свыше 250 кВт) должно быть специально выделенное лицо, ведающее эксплуатацией освещения (инженер или техник). Освещенность проверяется не реже 1 раза в год, после очередной чистки светильников и замены перегоревших ламп.

3.2.7 Расчет естественного освещения

Помещения с постоянным пребыванием людей должны иметь, как правило, естественное освещение.

При проектировании новых помещений, при реконструкции старых, при проектировании естественного освещения помещений судна и других объектов необходимо определить площадь световых проемов, обеспечивающих нормированное значение КЕО в соответствии с требованиями СНиП РК 2.04-05-2002 «Естественное и искусственное освещение. Нормы проектирования».

Расчет заключается в предварительном определении площади световых проемов при боковом и верхнем освещении по следующим формулам:

При боковом освещении

. (3.15)

При верхнем освещении

(3.16)

где S о - площадь световых проемов при боковом освещении, м 2 ;

S n - площадь пола помещения, м 2 ;

е н – нормируемое значение КЕО;

К з –коэффициент запаса;

h о - световая характеристика окон;

t о - общий коэффициент светопропускания, определяют по формуле

t о = t 1 t 2 t 3 t 4 t 5 (3.17)

где t 1 - коэффициент светопропускания материала;

t 2 - коэффициент, учитывающий потери света в переплетах светопроема;

t 3 - коэффициент, учитывающий потери света в несущих конструкциях, при боковом освещении равен 1, при верхнем освещении;

t 4 - коэффициент, учитывающий потери света в солнцезащитных устройствах;

t 5 - коэффициент, учитывающий потери света в защитной сетке, устанавливаемой под фонарями, принимают равным 0,9;

r 1 - коэффициент, учитывающий повышение КЕО при боковом освещении, благодаря свету, отраженному от поверхности помещения и подстилающего слоя, примыкающего к зданию;

К зд - коэффициент, учитывающий затемнение окон противостоящими зданиями;

S ф -площадь световых проемов (в свету) при верхнем освещении, м 2 ;

h ф -световая характеристика фонаря или светового проема в плоскости покрытия;

r 2 - коэффициент, учитывающий повышение КЕО при верхнем освещении, благодаря свету, отраженному от поверхности помещения;

К ф - коэффициент, учитывающий тип фонаря.